
Research Questions
Assertions are boolean expressions connected to a program
point, that need to evaluate to true during the execution of the
program. If the assertion predicate evaluates to false, JVM
throws an Assertion Error.
 

Studies have been conducted to report that developers can
detect up to 80% of the bugs with the use of assertions [4].
However, assertions are generally missing in practice, or poorly
authored. We aim to understand the role of assertions from the
programmer's perspective, and extend this work subsequently
to automatically generate context-aware assertions to aid
software developers in authoring Java programs.

RQ1: Is there a correlation between code complexity and use of assertions?
RQ2: Does the theme/domain of the project influence the use of assertions?
RQ3: Are assertions added by developers proactively or reactively?
RQ4: At what program points in a method are assertions most frequently seen?
RQ5: Which variables are evaluated by the assertion predicate at these
program points?

Study of Assertions: Understanding Assertion Use in Java Projects on GitHub
Bhavya Chopra (bhavya18333@iiitd.ac.in) | Advisor: Dr. Rahul Purandare

Indraprastha Institute of Information Technology Delhi

Motivation

Data Collection
Cloned 1000 most popular (most starred) Java repositories
on GitHub, extracted metadata using PyGitHub Wrapper.
Cleaned the dataset by removing any duplicates or forks,
and obtained set of 750 repositories, spanning across
various software development categories - algorithms,
program meta-analysis, development tools, web utility,
database management, etc.
Used Spoon (spoon.gforge.inria.fr) to filter out 152
repositories that contained at least one assertion.
Filtered out 95 repositories that contained at least one
assertion not belonging to 'test' files.
Programmed 8 parsers in Spoon using the Visitor Design
Pattern to extract information about the subjects.

Future Work
Performing backward flow data dependence analysis,
considering assertion as source statement to analyse
variables present in the assertion predicates (RQ 5).
Forming a heuristics and learning based approach to
predict program points for adding assertions and
variables to be evaluated. 

Casalnuovo et al. analyse 69 C and C++ projects to show
that assertions have a small effect on reducing the density
of bugs and developers often add asserts to methods they
have larger ownership of [1].
Pavneet Singh and David Lo partially replicate the above
study for Java projects and obtain similar findings [2].
Additionally, they conduct an open card-sort study and
identify 8 categories of assertions, which we leverage and
extend for our study.
Baudry et al. posit that the use of assertions eases debug-
ging and developers value their quality over quantity[3].

Related Work

Methodology
Developed AST traversers using the Visitor Design Pattern, extending
the CtScanner class in Spoon. Used to extract information about the
programs for all RQs - SLOC, Cyclomatic Complexity, assert statement
locations, representing methods as sentences, and variable properties.

References
[1] Casalnuovo, C., Devanbu, P., Oliveira, A., Filkov, V., and Ray, B. Assert use in
github projects. In Proceedings of the 37th International Conference on Software Engineering - Volume 1 (2015),
ICSE ’15, IEEE Press, p. 755–766.
[2] Kochhar, P. S., and Lo, D. Revisiting assert use in github projects. In Proceedings of
the 21st International Conference on Evaluation and Assessment in Software Engineering (New York, NY, USA,
2017), EASE’17, Association for Computing Machinery, p. 298–307.
[3] Baudry, B., Le Traon, Y., and Jezequel, J.-M. Robustness and diagnosability of OO systems designed by
contracts. In Proceedings Seventh International Software Metrics
Symposium (2001), pp. 272–284.
[4] Briand, L. C., Labiche, Y., and Sun, H. Investigating the use of analysis contracts
to support fault isolation in object oriented code. SIGSOFT Softw. Eng. Notes 27, 4 (July 2002), 70–80.

visitCtAssert visitCtIf visitCtWhile

Java Deep-Search Scan Visitor

Performed qualitative analysis of a statistically representative number
of methods with assertions for RQs 2, 3, 4 and 5 with three annotators.
We calculated inter-rater agreement scores and proceeded with
annotation after receiving high-almost perfect agreement (Scores
between 0.81-0.95)
Employed Hurdle Poison Regression and Hurdle Negative Binomial
Regression models for analysis due to excessive 0's in quantitative data.

Findings: Locations of Assertions
The following graph represents most frequent statements as n-grams
immediately preceeding (blue columns) and immediately succeeding (orange
bars) the assert statements. Please visit bit.ly/rq4-result for qualitative insights.

Findings: Use of Assertions
Hurdle component models the effect of going from 0 to
1 assertion, and Count component models effect of
going from non-zero value to another non-zero value.

We find that SLOC is positively correlated for the hurdle
component, & negatively for the count component.
Cyclomatic Complexity and number of comments are
positively correlated for the hurdle & count components.

For RQ 2, we categorized projects into domains and
assertions into types. We obtain a varying distribution
of assertions across project domains in Java:

For RQ 3, we find that 7.64% assertions are reactive,
whereas 92.35% assertions are proactive. 

Reactive assertions are added for making bug-fixes.
Proactive assertions are added while rolling out new
features, to ensure backward compatibility, for performing
code optimization, & for documentation purposes.


